Mar 3, 2016

Powerful decomposition of complex traits in a diploid model using Phased Outbred Lines

BioRxiv : the Preprint Server for Biology
Johan HallinGianni Liti

Abstract

Explaining trait differences between individuals is a core but challenging aim of life sciences. Here, we introduce a powerful framework for complete decomposition of trait variation into its underlying genetic causes in diploid model organisms. We intercross two natural genomes over many sexual generations, sequence and systematically pair the recombinant gametes into a large array of diploid hybrids with fully assembled and phased genomes, termed Phased Outbred Lines (POLs). We demonstrate the capacity of the framework by partitioning fitness traits of 7310 yeast POLs across many environments, achieving near complete trait heritability (mean H2 = 91%) and precisely estimating additive (74%), dominance (8%), second (9%) and third (1.8%) order epistasis components. We found nonadditive quantitative trait loci (QTLs) to outnumber (3:1) but to be weaker than additive loci; dominant contributions to heterosis to outnumber overdominant (3:1); and pleiotropy to be the rule rather than the exception. The POL approach presented here offers the most complete decomposition of diploid traits to date and can be adapted to most model organisms.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Quantitative Trait Loci
Genome
pol genes
Environment
Yeasts
Genetic Pleiotropy
Hybrids
RLN2
Gametes
PAPD7 gene

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.