Mar 29, 2020

Precommissural and postcommissural fornix microstructure in healthy aging and cognition

Brain and Neuroscience Advances
Bethany M CoadClaudia Metzler-Baddeley

Abstract

The fornix is a key tract of the hippocampal formation, whose status is presumed to contribute to age-related cognitive decline. The precommissural and postcommissural fornix subdivisions form respective basal forebrain/frontal and diencephalic networks that may differentially affect aging and cognition. We employed multi-parametric magnetic resonance imaging (MRI) including neurite orientation density and dispersion imaging, quantitative magnetization transfer (qMT), and T1-relaxometry MRI to investigate the microstructural properties of these fornix subdivisions and their relationship with aging and cognition in 149 asymptomatic participants (38-71 years). Aging was associated with increased free water signal and reductions in myelin-sensitive R1 and qMT indices but no apparent axon density differences in both precommissural and postcommissural fibers. Precommissural relative to postcommissural fibers showed a distinct microstructural pattern characterised by larger free water signal and axon orientation dispersion, with lower apparent myelin and axon density. Furthermore, differences in postcommissural microstructure were related to performance differences in object-location paired-associate learning. These results provide n...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Neuroimaging
Hippocampus (Brain)
Neuron Projection Morphogenesis
Orientation (spatial)
Magnetic Resonance Imaging
Cognitive Deterioration
Cognition
Fiber
Dietary Fiber Intake
Aging

Related Feeds

Basal Forebrain- Circuits

Basal forebrain is a region in the brain important for production of acetylcholine and is the major cholinergic output of the CNS. Discover the latest research on circuits in the basal forebrain here.