Jan 16, 2018

Predicting age from cortical structure across the lifespan

BioRxiv : the Preprint Server for Biology
Christopher R Madan, Elizabeth A Kensinger

Abstract

Despite inter-individual differences in cortical structure, cross-sectional and longitudinal studies have demonstrated a large degree of population-level consistency in age-related differences in brain morphology. The present study assessed how accurately an individual's age could be predicted by estimates of cortical morphology, comparing a variety of structural measures, including thickness, gyrification, and fractal dimensionality. Structural measures were calculated across up to seven different parcellation approaches, ranging from 1 region to 1000 regions. The age-prediction framework was trained using morphological measures obtained from T1-weighted MRI volumes collected from multiple sites, yielding a training dataset of 1056 healthy adults, aged 18-97. Age predictions were calculated using a machine-learning approach that incorporated non-linear differences over the lifespan. In two independent, held-out test samples, age predictions had a median error of 6-7 years. Age predictions were best when using a combination of cortical metrics, both thickness and fractal dimensionality. Overall, the results reveal that age-related differences in brain structure are systematic enough to enable reliable age prediction based on me...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
Longitudinal Studies
Diffusion Weighted Imaging
Science of Morphology
Brain
Structure of Cortex of Kidney
Site
Cross-Sectional Studies
Structure
Learning

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Related Papers

The European Journal of Neuroscience
Christopher R Madan, Elizabeth A Kensinger
Brain Informatics
Christopher R Madan, Elizabeth A Kensinger
BioRxiv : the Preprint Server for Biology
Christopher R Madan
© 2020 Meta ULC. All rights reserved