Apr 2, 2013

Predicting long non-coding RNAs using RNA sequencing

Methods : a Companion to Methods in Enzymology
Nicholas E Ilott, Chris P Ponting


The advent of next-generation sequencing, and in particular RNA-sequencing (RNA-seq), technologies has expanded our knowledge of the transcriptional capacity of human and other animal, genomes. In particular, recent RNA-seq studies have revealed that transcription is widespread across the mammalian genome, resulting in a large increase in the number of putative transcripts from both within, and intervening between, known protein-coding genes. Long transcripts that appear to lack protein-coding potential (long non-coding RNAs, lncRNAs) have been the focus of much recent research, in part owing to observations of their cell-type and developmental time-point restricted expression patterns. A variety of sequencing protocols are currently available for identifying lncRNAs including RNA polymerase II occupancy, chromatin state maps and - the focus of this review - deep RNA sequencing. In addition, there are numerous analytical methods available for mapping reads and assembling transcript models that predict the presence and structure of lncRNAs from RNA-seq data. Here we review current methods for identifying lncRNAs using large-scale sequencing data from RNA-seq experiments and highlight analytical considerations that are required w...Continue Reading

Mentioned in this Paper

Establishment and Maintenance of Localization
Severe Acute Respiratory Syndrome
RNA Polymerase II
Histone antigen
Repetitive Region
Systemic Inflammatory Response Syndrome
Enzymes, antithrombotic

Related Feeds

CREs: Gene & Cell Therapy

Gene and cell therapy advances have shown promising outcomes for several diseases. The role of cis-regulatory elements (CREs) is crucial in the design of gene therapy vectors. Here is the latest research on CREs in gene and cell therapy.