Preparation and characterization of an active lysozyme derivative: Kyn 62-lysozyme

Journal of Biochemistry
N YamasakiF Sakiyama

Abstract

A novel method for the preparation of Kyn 62-lysozyme, in which tryptophan 62 is replaced by kynurenine, is reported. Hen egg-white lysozyme was ozonized in aqueous solution to yield one N'-formylkynurenine residue and deformylated with hydrochloric acid in frozen solution at -10 degrees C. Crude Kyn 62-lysozyme was purified by affinity and Bio Rex 70 chromatography successively. Kyn 62-lysozyme retains affinity for chitin and is essentially an active enzyme with a slightly weakened but distinct catalytic activity. After this modification, the enzyme activity was changed differently depending on the kind of substrate. At the individual optimum pH's, lytic activity was largely retained (80% active), but the catalytic efficiency for hydrolyzing glycol chitin was relatively low (30% active). Lysis of M. lysodeikticus cell suspensions was optimally catalyzed by Kyn 62-lysozyme at pH 6.2 and at 0.088 ionic strength. These values are lower by 1.3 pH unit and 0.04 ionic strength, respectively, than those of intact lysozyme. The optimum pH and ionic strength for the hydrolysis of neutral substrates were scarcely affected. These results suggest the significance of electrostatic interaction in the lysis of lysozyme. Relatively limited lo...Continue Reading

Related Concepts

Egg Whites
Hydrogen-Ion Concentration
Kynurenine
Leftose
Oxidation-Reduction
Spectrophotometry, Ultraviolet
PMS-Tryptophan

Related Feeds

Bacterial Cell Wall Structure (ASM)

Bacterial cell walls are made of peptidoglycan (also called murein), which is made from polysaccharide chains cross-linked by unusual peptides containing D-amino acids. Here is the latest research on bacterial cell wall structures.

Bacterial Cell Wall Structure

Bacterial cell walls are made of peptidoglycan (also called murein), which is made from polysaccharide chains cross-linked by unusual peptides containing D-amino acids. Here is the latest research on bacterial cell wall structures.