Progressive cerebral atrophy in multiple sclerosis. A serial MRI study
Abstract
Recent studies of the spinal cord and cerebellum have highlighted the importance of atrophy in the development of neurological impairment in multiple sclerosis. We have therefore developed a technique to quantify the volume of another area commonly involved pathologically in multiple sclerosis: the cerebral white matter. The technique we describe extracts the brain from the skull on four contiguous 5 mm periventricular slices using an algorithm integrated in an image analysis package, and quantifies their volume. Intra-observer scan-rescan reproducibility was 0.56%. We have applied this technique serially to 29 patients with multiple sclerosis selected for an 18-month treatment trial with a monoclonal antibody against CD4+ lymphocytes (deemed clinically ineffective). A decrease in volume beyond the 95% confidence limits for measurement variation was seen in 16 patients by the end of the 18-month period. The rate of development of atrophy was significantly higher in those who had a sustained deterioration in their Kurtzke expanded disability status scale (EDSS) score compared with those who did not (respective means: -6.4 ml year-1 and -1.8 ml year-1, P < 0.05) but in both groups these changes differed significantly from baselin...Continue Reading
Citations
Axonal damage accumulates in the progressive phase of multiple sclerosis: three year follow up study
Neocortical volume decrease in relapsing-remitting multiple sclerosis with mild cognitive impairment
Related Concepts
Trending Feeds
COVID-19
Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.
Neural Activity: Imaging
Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.
The Tendon Seed Network
Tendons are rich in the extracellular matrix and are abundant throughout the body providing essential roles including structure and mobility. The transcriptome of tendons is being compiled to understand the micro-anatomical functioning of tendons. Discover the latest research pertaining to the Tendon Seed Network here.
Myocardial Stunning
Myocardial stunning is a mechanical dysfunction that persists after reperfusion of previously ischemic tissue in the absence of irreversible damage including myocardial necrosis. Here is the latest research.
Chronic Fatigue Syndrome
Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.
Incretins
Incretins are metabolic hormones that stimulate a decrease in glucose levels in the blood and they have been implicated in glycemic regulation in the remission phase of type 1 diabetes. Here is the latest research.
Chromatin Regulation and Circadian Clocks
The circadian clock plays an important role in regulating transcriptional dynamics through changes in chromatin folding and remodelling. Discover the latest research on Chromatin Regulation and Circadian Clocks here.
Long COVID-19
“Long Covid-19” describes illness in patients who are reporting long-lasting effects of the SARS-CoV-19 infection, often long after they have recovered from acute Covid-19. Ongoing health issues often reported include low exercise tolerance and breathing difficulties, chronic tiredness, and mental health problems such as post-traumatic stress disorder and depression. This feed follows the latest research into Long Covid.
Spatio-Temporal Regulation of DNA Repair
DNA repair is a complex process regulated by several different classes of enzymes, including ligases, endonucleases, and polymerases. This feed focuses on the spatial and temporal regulation that accompanies DNA damage signaling and repair enzymes and processes.