PMID: 38021Sep 1, 1979

Properties and uses of immobilized light-emitting enzyme systems from Beneckea harveyi

Clinical Chemistry
E Jablonski, M Deluca

Abstract

Bacterial luciferase and NADH:FMN oxidoreductase have been immobilized onto arylamine glass beads. These immobilized enzymes can detect as little as 0.2 pmol of NADH per assay sample. Glucose-6-phosphate dehydrogenase has been co-immobilized with these enzymes, and with this system it is possible to quantitate 1 pmol of glucose 6-phosphate. By co-immobilizing a fourth enzyme, hexokinase, onto the glass beads, the system can reproducibly detect 20 pmol of glucose per liter. These immobilized enzyme systems are potentially superior to soluble enzymes by being reusable and much more stable. We compared the light-emitting properties of the immobilized enzyme systems with that of an equivalent mixture of the soluble enzymes. The most striking difference was the apparently more efficient conversion of NADH or glucose 6-phosphate to light by the immobilized enzymes. We used hydroxysteroid dehydrogenase in developing a soluble coupled system for the assay of androsterone and testosterone. The lower limit of detection was 100 pmol.

Related Concepts

Glucose, (beta-D)-Isomer
Glucosephosphates
Luciferases
Phosphorescent Measurements
NADH
NADH, NADPH Oxidoreductases
NADP
Catatoxic Steroids
Beneckea
Vibrionaceae

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.