Aug 25, 2014

Location specific small RNA annealing to the HCV 5' UTR promotes Hepatitis C Virus replication by favoring IRES formation and stimulating virus translation

bioRxiv
David LovellJürg Bähler

Abstract

Hepatitis C virus (HCV) genome replication requires annealing of a liver specific small-RNA, miR-122 to 2 sites on 5' untranslated region (UTR). Annealing has been reported to a) stabilize the genome, b) promote translation, and c) induce the canonical HCV 5′ UTR Internal Ribosome Entry Site (IRES) structure. In this report we identify the relative impact of small RNA annealing on the three functions ascribed to miR-122 and generate a mechanistic model for miR-122 promotion of HCV. First, we identified that perfectly complementary small RNAs that anneal to different locations on the HCV 5' UTR stimulate replication with varying efficiencies and mapped the region on the HCV genome to which small RNA annealing promotes virus replication. Second, by using a panel of small RNAs that promote with varying efficiencies we link HCV replication induction with translation stimulation and 5'] UTR RNA structure modifications. However, replication promotion was not linked to genome stabilization since all small RNAs tested could stabilize the viral genome regardless of their ability to promote replication. Thus, we propose that miR-122 annealing promotes HCV replication primarily by activating the HCV IRES and stimulating translation, and t...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
Genes
Regulation of Biological Process
Imaging/Visualization/Scanning
Yeasts
Gene Expression
Analysis
Protein Expression

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.