Mar 5, 2020

Protective effects of anthocyanins against brain ischemic damage

Journal of Bioenergetics and Biomembranes
Kristina SkemieneVilmante Borutaite


Anthocyanins are considered as bioactive components of plant-based diets that provide protection against ischemic cardiovascular pathologies by mechanisms dependent on their antioxidant and reductive capacities. However, it is not clear whether similar anthocyanin-mediated mechanisms can provide protection against ischemia-induced brain mitochondrial injury and cell death. In this study, we compared effects of three cyanidin-3-glycosides - glucoside (Cy3G), galactoside (Cy3Gal) and rutinoside (Cy3R), with pelargonxidin-3-glucoside (Pg3G) and found that at 10-20 μM concentrations they have no direct effect on respiratory functions of mitochondria isolated from normal or ischemia-damaged rat brain slices. However, intravenous injection of Cy3Gal and Cy3G (0,025 mg/kg or 0,05 mg/kg what matches 10 μM or 20 μM respectively) but not Cy3R in rats protected against ischemia-induced caspase activation and necrotic cell death, and reduced infarct size in cerebral cortex and cerebellum. These effects correlated with cytochrome c reducing capacity of cyanidin-3-glycosides. In contrast, intravenous injection of 0,025 mg/kg Pg3G which has the lowest cytochrome c reducing capacity among investigated anthocyanins, had no effect on ischemia-in...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Cell Respiration
Traumatic Injury
SLC25A14 gene

Related Feeds

Bacterial Respiration

This feed focuses on cellular respiration in bacteria, known as bacterial respiration. Discover the latest research here.

Brain Ischemia

Brain ischemia is a condition in which there is insufficient blood flow to the brain to meet metabolic demand. Discover the latest research on brain ischemia here.

Brain Injury & Trauma

brain injury after impact to the head is due to both immediate mechanical effects and delayed responses of neural tissues.