Feb 26, 2015

Protein Domain Hotspots Reveal Functional Mutations across Genes in Cancer

BioRxiv : the Preprint Server for Biology
Martin L MillerChris Sander

Abstract

In cancer genomics, frequent recurrence of mutations in independent tumor samples is a strong indication of functional impact. However, rare functional mutations can escape detection by recurrence analysis for lack of statistical power. We address this problem by extending the notion of recurrence of mutations from single genes to gene families that share homologous protein domains. In addition to lowering the threshold of detection, this sharpens the functional interpretation of the impact of mutations, as protein domains more succinctly embody function than entire genes. Mapping mutations in 22 different tumor types to equivalent positions in multiple sequence alignments of protein domains, we confirm well-known functional mutation hotspots and make two types of discoveries: 1) identification and functional interpretation of uncharacterized rare variants in one gene that are equivalent to well-characterized mutations in canonical cancer genes, such as uncharacterized ERBB4 (S303F) mutations that are analogous to canonical ERRB2 (S310F) mutations in the furin-like domain, and 2) detection of previously unknown mutation hotspots with novel functional implications. With the rapid expansion of cancer genomics projects, protein do...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Immunoglobulin-Like C2-Type Domain
ERBB4 gene
Genes
Paired basic amino acid cleaving enzyme
Neoplasms
Recurrent Malignant Neoplasm
ESRRB
Genomics
Cell Growth
Recurrence (Disease Attribute)

Related Feeds

Cancer Genomics

Cancer genomics employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Discover the latest research here.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cancer Genomics (Keystone)

Cancer genomics approaches employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Discover the latest research using such technologies in this feed.

Cancer Genomics (Preprints)

Cancer genomics employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Discover the latest preprints here.