Incorporating selfing to purge deleterious alleles in a cassava genomic selection program

BioRxiv : the Preprint Server for Biology
M. Somo, Jean-Luc Jannink

Abstract

Cassava has been found to carry high levels of recessive deleterious mutations and it is known to suffer from inbreeding depression. Breeders therefore consider specific approaches to decrease cassava's genetic load. Using self fertilization to unmask deleterious recessive alleles and therefore accelerate their purging is one possibility. Before implementation of this approach we sought to understand better its consequences through simulation. Founder populations with high directional dominance were simulated using a natural selection forward simulator. The founder population was then subjected to five generations of genomic selection in schemes that did or did not include a generation of phenotypic selection on selfed progeny. We found that genomic selection was less effective under the directional dominance model than under the additive models that have commonly been used in simulations. While selection did increase favorable allele frequencies, increased inbreeding during selection caused decreased gain in genotypic values under the directional dominance. While purging selection on selfed individuals was effective in the first breeding cycle, it was not effective in later cycles, an effect we attributed to the fact that the ...Continue Reading

Related Concepts

Metabolic Process, Cellular
Genes
Protoplasm
DHFR
Promoter
Gene Transfer, Horizontal
Host (Organism)
Enzyme Activity
Proteome
Chromosomes

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

© 2020 Meta ULC. All rights reserved