Nov 24, 2001

Protein turnover plays a key role in aging

Mechanisms of Ageing and Development
Alexey G Ryazanov, Bradley S Nefsky

Abstract

Although the molecular mechanism of aging is unknown, a progressive increase with age in the concentration of damaged macromolecules, especially proteins, is likely to play a central role in senescent decline. In this paper, we discuss evidence that the progressive decrease in protein synthesis and turnover can be the primary cause of the increase in the concentration of damaged proteins with age. Conversely, protein damage itself is likely to be the cause of the decrease in protein turnover. This could establish a positive feedback loop where the increase in protein damage decreases the protein turnover rate, leading to a further increase in the concentration of damaged proteins. The establishment of such a feedback loop should result in an exponential increase in the amount of protein damage-a protein damage catastrophe-that could be the basis of the general deterioration observed in senescent organisms.

  • References45
  • Citations42

Mentioned in this Paper

Protein Degradation, Metabolic
Senility
Protein Biosynthesis
Staphylococcal Protein A
Macromolecule
Biochemical Turnover

About this Paper

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Head And Neck Squamous Cell Carcinoma

Squamous cell carcinomas account for >90% of all tumors in the head and neck region. Head and neck squamous cell carcinoma incidence has increased dramatically recently with little improvement in patient outcomes. Here is the latest research on this aggressive malignancy.

Signaling in Adult Neurogenesis

Neural stem cells play a critical role in the production of neuronal cells in neurogenesis is of great importance. Of interest is the role signalling mechanisms in adult neurogenesis. Discover the latest research on signalling in adult neurogenesis.

Psychiatric Chronotherapy

Psychiatric Chronotherapy considers the circadian rhythm as a major factor for optimizing therapeutic efficacy of psychiatric interventions. Discover the latest research on Psychiatric Chronotherapy here.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.