PMID: 8717499Feb 1, 1996

Proteolytic enzymes from Streptomyces fradiae: a metalloendopeptidase, subtilisin-like, and trypsin-like proteinases

M E BormatovaV M Stepanov


Three proteolytic enzymes-the metalloproteinase, SFMP, and two serine proteinases, SFSP and SFTP-have been isolated and purified from the culture fluid of Streptomyces fradiae using chromatography on bacitracin-silochrome, bacitracin-Sepharose, DEAE-cellulose and fractionation by ammonium sulfate. Study of physico-chemical and functional properties of the enzymes and structural analysis revealed that SFMP is a cysteine-containing metalloendopeptidase with M(r) of 36 kDa, has a peak activity for synthetic substrates at pH 7.0-7.5 and at 60-65 degrees C and is stable at pH 7.0-9.0. The serine proteinase SFSP is related to subtilisin-like enzymes, has a M(r) of 29 kDa and a pH optimum at 7.5-8.5 at temperature up to 50 degrees C. The proteinase is stable at pH 4.0-9.0 and retains 30% of its activity at 70 degrees C. The other serine proteinase, SFTP, has a M(r) of 26 kDa and is related to trypsin-like enzymes. Its activity for synthetic substrates of trypsin is maximal at pH 6.8-8.8 at 50 degrees C. The enzyme is stable at pH 4.5-8.5 and at temperature below 50 degrees C. It has been shown that Streptomyces fradiae, like Streptomyces griseus and other Streptomycetes, possesses an ability to secrete serine proteinases (SFSP and SFT...Continue Reading

Related Concepts

Liquid Chromatography
Enzyme Stability
Hydrogen-Ion Concentration
Serine Endopeptidases
Subtilisin 72
Homologous Sequences, Amino Acid

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Computational Methods for Protein Structures

Computational methods employing machine learning algorithms are powerful tools that can be used to predict the effect of mutations on protein structure. This is important in neurodegenerative disorders, where some mutations can cause the formation of toxic protein aggregations. This feed follows the latests insights into the relationships between mutation and protein structure leading to better understanding of disease.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.