DOI: 10.1101/491423Dec 9, 2018Paper

Proteomic and Genomic Signatures of Repeat-instability in Cancer and Adjacent Normal Tissues

BioRxiv : the Preprint Server for Biology
Erez PersiDavid Horn

Abstract

Repetitive sequences are hotspots of evolution at multiple levels. However, due to technical difficulties involved in their assembly and analysis, the role of repeats in tumor evolution is poorly understood. We developed a rigorous motif-based methodology to quantify variations in the repeat content of proteomes and genomes, directly from proteomic and genomic raw sequence data, and applied it to analyze a wide range of tumors and normal tissues. We identify high similarity between the repeat-instability in tumors and their patient-matched normal tissues, but also tumor-specific signatures, both in protein expression and in the genome, that strongly correlate with cancer progression and robustly predict the tumorigenic state. In a patient, the hierarchy of genomic repeat instability signatures accurately reconstructs tumor evolution, with primary tumors differentiated from metastases. We find an inverse relationship between repeat-instability and point mutation load, within and across patients, and independently of other somatic aberrations. Thus, repeat-instability is a distinct, transient and compensatory adaptive mechanism in tumor evolution.

Related Concepts

Malignant Neoplasms
Biological Evolution
Genome
Neoplasm Metastasis
Neoplasms
Research Methodology
Adjacent
Primary Neoplasm
Proteome
Proteomics

Related Feeds

Cancer Genomics (Preprints)

Cancer genomics employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Discover the latest preprints here.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

CRISPR Ribonucleases Deactivation

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on mechanisms that underlie deactivation of CRISPR ribonucleases. Here is the latest research.

Cancer Genomics (Keystone)

Cancer genomics approaches employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Discover the latest research using such technologies in this feed.

Cancer -Omics

A variety of different high-throughput technologies can be used to identify the complete catalog of changes that characterize the molecular profile of cohorts of tumor samples. Discover the latest insights gained from cancer 'omics' in this feed.