Purification and characterization of an endonuclease specific for single-stranded DNA from Bacillus subtilis Marburg

Journal of Biochemistry
K MatsumotoY Ikeda

Abstract

Bacillus subtilis Marburg TI (thy,trpC2) has at least four endonuclease activities as assayed by measuring the conversion of single-stranded circular f1 DNA to the linear form by agarose gel electrophoresis. One of them, which is specific for single-stranded DNA (named endonuclease MII), was purified about 320 times by two chromatographic steps and gel filtration, thereby eliminating exonuclease and phosphomonoesterase activities. This activity requires divalent cations but does not require ATP. The molecular weight estimated by gel filtration was about 57,000 daltons. The cleavage products have 5'-phosphoryl termini. At low concentrations, double-stranded DNA is not split to any detectable extent. At high concentrations, however, double-stranded superhelical DNA is attacked to yield open-circular and linear DNA's. The activity of the enzyme towards single-stranded circular DNA relative to that towards double-stranded linear DNA was calculated to be approximately 5,000:1 by comparing the initial rates of introducing single-strand breaks into the DNA's.

Citations

Jan 1, 1981·Molecular & General Genetics : MGG·K Matsumoto, H Hirokawa

Related Concepts

Striadyne
Natto Bacteria
Cations, Divalent
Centrifugation, Density Gradient
Chromatography, DEAE-Cellulose
Molecular Sieve Chromatography
DNA, Single-Stranded
Electrophoresis, Agar Gel
Endonuclease
Hydrogen-Ion Concentration

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Congenital Hyperinsulinism

Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Epigenetic Memory

Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Femoral Neoplasms

Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.