DOI: 10.1101/472530Nov 18, 2018Paper

Quantifying dynamic protein acetylation using quantitative stoichiometry

BioRxiv : the Preprint Server for Biology
Josue BaezaJohn M Denu


Protein acetylation is a widespread post-translational modification implicated in many cellular processes. Recent advances in mass spectrometry have enabled the cataloging of thousands of sites throughout the cell, however identifying regulatory acetylation marks have proven to be a daunting task. Knowledge of the kinetics and stoichiometry of site-specific acetylation are important factors to uncover function. Here, an improved method of quantifying acetylation stoichiometry was developed and validated, providing a detailed landscape of dynamic acetylation stoichiometry within cellular compartments. The dynamic nature of site-specific acetylation in response to serum stimulation was revealed. In two distinct human cell lines, growth factor stimulation led to site-specific, temporal acetylation changes, revealing diverse kinetic profiles that clustered into several groups. Overlap of dynamic acetylation sites among two different human cell lines suggested similar regulatory control points across major cellular pathways that include splicing, translation, and protein homeostasis. Rapid increases in acetylation on protein translational machinery suggest a positive regulatory role under pro-growth conditions. Lastly, higher median...Continue Reading

Related Concepts

Growth Factor
Post-Translational Protein Processing
RNA Splicing
Mass Spectrometry
Cell Line, Tumor
Protein Biosynthesis

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

© 2021 Meta ULC. All rights reserved