Quantifying pollen-vegetation relationships to reconstruct ancient forests using 19th-century forest composition and pollen data

BioRxiv : the Preprint Server for Biology
Andria DawsonStephen T Jackson


Mitigation of climate change and adaptation to its effects relies partly on how effectively land-atmosphere interactions can be quantified. Quantifying composition of past forest ecosystems can help understand processes governing forest dynamics in a changing world. Fossil pollen data provide information about past forest composition, but rigorous interpretation requires development of pollen-vegetation models (PVMs) that account for interspecific differences in pollen production and dispersal. Widespread and intensified land-use over the 19th and 20th centuries may have altered pollen-vegetation relationships. Here we use STEPPS, a Bayesian hierarchical spatial PVM, to estimate key process parameters and associated uncertainties in the pollen-vegetation relationship. We apply alternate dispersal kernels, and calibrate STEPPS using a newly developed Euro-American settlement-era calibration data set constructed from Public Land Survey data and fossil pollen samples matched to the settlement-era using expert elicitation. Models based on the inverse power-law dispersal kernel outperformed those based on the Gaussian dispersal kernel, indicating that pollen dispersal kernels are fat tailed. Pine and birch have the highest pollen pr...Continue Reading

Related Concepts

Pan American Health Organization
Spatial Distribution
Chemical Extraction
Pine, Bach Flower Essence
poly(1-vinylimidazole-co-methyl methacrylate) copolymer
Palm kernelate

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.