PMID: 44705Nov 1, 1979

Quantitation of the adherence of an enteropathogenic Escherichia coli to isolated rabbit intestinal brush borders

Infection and Immunity
C P CheneyS B Formal


Two assays were developed to quantitate the adherence of an Escherichia coli strain (RDEC-1) known to colonize the mucosal surface of the small intestine of rabbits to brush borders isolated from rabbit intestinal epithelial cells. In the first assay, the mean adherence per rabbit brush border was determined by counting the number of organisms adhering to each of 40 brush borders under phase microscopy. The mean adherence of RDEC-1 (11.5 +/- 0.7 per rabbit brush border) was significantly greater than adherence of two nonpathogenic strains: HS (2.7 +/- 0.4 per rabbit brush border) and 640 (0.8 +/- 0.1 per rabbit brush border). A similar distinction between the adherence of RDEC-1 and the control (nonadherent) organisms could be made more rapidly by determining the percentage of the total number of brush borders which had 10 or more adherent organisms; this second assay was used to define the optimum conditions for adherence. Maximum adherence was seen within 15 min. Adherence was temperature dependent, with adherence after 1 min at 37 degrees C being fourfold greater than that at 4 degrees C. The pH optimum for adherence was between 6.5 and 7.0, and adherence was abolished below pH 5.0. With the first, more sensitive assay, the ...Continue Reading

Related Concepts

Alkalescens-Dispar Group
Squamous Transitional Epithelial Cell Count
Small Intestinal Wall Tissue
Brush border antigen
Culture Techniques

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Synapse Loss as Therapeutic Target in MS

As we age, the number of synapses present in the human brain starts to decline, but in neurodegenerative diseases this occurs at an accelerated rate. In MS, it has been shown that there is a reduction in synaptic density, which presents a potential target for treatment. Here is the latest research on synapse loss as a therapeutic target in MS.

Artificial Intelligence in Cardiac Imaging

Artificial intelligence (ai) techniques are increasingly applied to cardiovascular (cv) medicine in cardiac imaging analysis. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Social Learning

Social learning involves learning new behaviors through observation, imitation and modeling. Follow this feed to stay up to date on the latest research.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Single Cell Chromatin Profiling

Techniques like ATAC-seq and CUT&Tag have the potential to allow single cell profiling of chromatin accessibility, histones, and TFs. This will provide novel insight into cellular heterogeneity and cell states. Discover the latest research on single cell chromatin profiling here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells.