Quorum-Sensing Synchronization of Synthetic Toggle Switches: A Design Based on Monotone Dynamical Systems Theory
Abstract
Synthetic constructs in biotechnology, biocomputing, and modern gene therapy interventions are often based on plasmids or transfected circuits which implement some form of "on-off" switch. For example, the expression of a protein used for therapeutic purposes might be triggered by the recognition of a specific combination of inducers (e.g., antigens), and memory of this event should be maintained across a cell population until a specific stimulus commands a coordinated shut-off. The robustness of such a design is hampered by molecular ("intrinsic") or environmental ("extrinsic") noise, which may lead to spontaneous changes of state in a subset of the population and is reflected in the bimodality of protein expression, as measured for example using flow cytometry. In this context, a "majority-vote" correction circuit, which brings deviant cells back into the required state, is highly desirable, and quorum-sensing has been suggested as a way for cells to broadcast their states to the population as a whole so as to facilitate consensus. In this paper, we propose what we believe is the first such a design that has mathematically guaranteed properties of stability and auto-correction under certain conditions. Our approach is guided ...Continue Reading
References
Citations
Related Concepts
Related Feeds
Bioinformatics in Biomedicine
Bioinformatics in biomedicine incorporates computer science, biology, chemistry, medicine, mathematics and statistics. Discover the latest research on bioinformatics in biomedicine here.
Biomaterial Engineering
Advances in biomaterial engineering have permitted the development of sophisticated drug-releasing materials with a biomimetic 3D support that allow a better control of the microenvironment of transplanted cells. Here is the latest research.