Rapid antibiotic resistance predictions from genome sequence data for S. aureus and M. tuberculosis.

BioRxiv : the Preprint Server for Biology
Phelim BradleyZamin Iqbal

Abstract

Rapid and accurate detection of antibiotic resistance in pathogens is an urgent need, affecting both patient care and population-scale control. Microbial genome sequencing promises much, but many barriers exist to its routine deployment. Here, we address these challenges, using a de Bruijn graph comparison of clinical isolate and curated knowledge-base to identify species and predict resistance profile, including minor populations. This is implemented in a package, Mykrobe predictor, for S. aureus and M. tuberculosis, running in under three minutes on a laptop from raw data. For S. aureus, we train and validate in 495/471 samples respectively, finding error rates comparable to gold-standard phenotypic methods, with sensitivity/specificity of 99.3%/99.5% across 12 drugs. For M. tuberculosis, we identify species and predict resistance with specificity of 98.5% (training/validating on 1920/1609 samples). Sensitivity of 82.6% is limited by current understanding of genetic mechanisms. We also show that analysis of minor populations increases power to detect phenotypic resistance in second-line drugs without appreciable loss of specificity. Finally, we demonstrate feasibility of an emerging single-molecule sequencing technique.

Related Concepts

Antibiotics
Patient Care
Mycobacterium tuberculosis
Staphylococcus aureus
Analysis
Pharmacologic Substance
Population Group
Genome Sequencing
Resistance Process
Species

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.