Jun 1, 2016

Rapid, one-step generation of biallelic conditional gene knockouts

BioRxiv : the Preprint Server for Biology
Bon-Kyoung KooWilliam C. Skarnes

Abstract

Loss-of-function studies are key to investigate gene function and CRISPR technology has made genome editing widely accessible in model organisms and cells. However, conditional gene inactivation in diploid cells is still difficult to achieve. Here, we present CRISPR-FLIP, a strategy that provides an efficient, rapid, and scalable method for bi-allelic conditional gene knockouts in diploid cells by co-delivery of CRISPR/Cas9 and a universal conditional intron cassette.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
Genes
CRISPR-Cas Systems
Knock-out
One-Step Dentin Bonding System
Gene Function
Clustered Regularly Interspaced Short Palindromic Repeats
Introns
Diploid Cell
Alleles

About this Paper

Related Feeds

CRISPR for Genome Editing

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here is the latest research on the use of CRISPR-Cas system in gene editing.

CRISPR (general)

Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). CRISPR-Cas system enables the editing of genes to create or correct mutations. Discover the latest research on CRISPR here.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

CRISPR Ribonucleases Deactivation

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on mechanisms that underlie deactivation of CRISPR ribonucleases. Here is the latest research.

CRISPR Genome Editing & Therapy (Preprints)

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on the application of this system for gene editing and therapy in human diseases.

CRISPR for Genome Editing (Preprints)

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here are the latest preprints on the use of CRISPR-Cas system in gene editing.