Jan 12, 2019

Recognition of the amyloid precursor protein by human γ-secretase

Science
Rui ZhouYigong Shi

Abstract

Cleavage of amyloid precursor protein (APP) by the intramembrane protease γ-secretase is linked to Alzheimer's disease (AD). We report an atomic structure of human γ-secretase in complex with a transmembrane (TM) APP fragment at 2.6-angstrom resolution. The TM helix of APP closely interacts with five surrounding TMs of PS1 (the catalytic subunit of γ-secretase). A hybrid β sheet, which is formed by a β strand from APP and two β strands from PS1, guides γ-secretase to the scissile peptide bond of APP between its TM and β strand. Residues at the interface between PS1 and APP are heavily targeted by recurring mutations from AD patients. This structure, together with that of γ-secretase bound to Notch, reveal contrasting features of substrate binding, which may be applied toward the design of substrate-specific inhibitors.

  • References1
  • Citations12

References

Mentioned in this Paper

Familial Alzheimer Disease (FAD)
Receptors, Notch
Protein Digestion
APP protein, human
Integral Membrane Proteins
Presenilin-1
Peptide Hydrolases
Inhibitors
Receptor Down-Regulation
Integral to Membrane

Related Feeds

Alzheimer's Disease: APP

Amyloid precursor protein proteolysis is critical for the development of Alzheimer's disease, a neurodegenerative disease associated with accumulation of amyloid plaques. Here is the latest research.

Alzheimer's Disease: Abeta

Alzheimer's disease (AD) is a chronic neurodegenerative disease associated with accumulation of amyloid plaques, which are comprised of amyloid beta. Here is the latest research in this field.