Recombination and lineage-specific mutations led to the emergence of SARS-CoV-2

BioRxiv : the Preprint Server for Biology
Juan Angel Patino-GalindoRaul Rabadan


The recent outbreak of a new coronavirus (SARS-CoV-2) in Wuhan, China, underscores the need for understanding the evolutionary processes that drive the emergence and adaptation of zoonotic viruses in humans. Here, we show that recombination in betacoronaviruses, including human-infecting viruses like SARS-CoV and MERS-CoV, frequently encompasses the Receptor Binding Domain (RBD) in the Spike gene. We find that this common process likely led to a recombination event at least 11 years ago in an ancestor of the SARS-CoV-2 involving the RBD. As a result of this recombination event, SARS-CoV and SARS-CoV-2 share a similar genotype in RBD, including two insertions (positions 432-436 and 460-472), and alleles 427N and 436Y. Both 427N and 436Y belong to a helix that interacts with the human ACE2 receptor. Ancestral state analyses revealed that SARS-CoV-2 differentiated from its most recent common ancestor with RaTG13 by accumulating a significant number of amino acid changes in the RBD. In sum, we propose a two-hit scenario in the emergence of the SARS-CoV-2 virus whereby the SARS-CoV-2 ancestors in bats first acquired genetic characteristics of SARS-CoV by incorporation of a SARS-like RBD through recombination before 2009, and subsequ...Continue Reading

Software Mentioned


Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.