Reconstitution of the somatic (O-) antigenic scheme for Providencia and preparation of O-typing antisera

The Journal of Infectious Diseases
J L PennerG R Whiteley


The somatic (O-) antigens of the type strains of the providencia antigenic scheme were examined for their biochemical reactions and their O-specificities. The scheme of 62 O-antigens was reconstituted from 52 original type strains and 10 strains substituted for originals that either were biochemically atypical of the genus or showed inappropriate serological reactions. Thirty-six type strains showed no significant relations with other type strains, and antisera could be used for typing without absorption. Among 26 type strains, significant reciprocal relations were demonstrated, and each cross-reacting antigen was examined for specificity and for its distribution among the type strains. Antisera to these strains required absorption with cell suspensions of other type strains for production of specificity in O-typing. Each typing antiserum, at low dilution, was shown to agglutinate homologous, but not heterologous, cell suspensions of type strains, and this result demonstrated the required specificity for typing on the basis of the O-antigens.


Dec 1, 1984·European Journal of Clinical Microbiology·G E HollickA Spellacy
Sep 10, 2013·Biochemistry. Biokhimii︠a︡·Olga G OvchinnikovaYuriy A Knirel
Dec 1, 1977·Journal of Clinical Microbiology·G R WhiteleyN A Hinton
Dec 1, 1979·Journal of Clinical Microbiology·J L PennerJ N Hennessy
Mar 1, 1981·Journal of Clinical Microbiology·R B GrantB J Jackowski

Related Concepts

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Spatio-Temporal Regulation of DNA Repair

DNA repair is a complex process regulated by several different classes of enzymes, including ligases, endonucleases, and polymerases. This feed focuses on the spatial and temporal regulation that accompanies DNA damage signaling and repair enzymes and processes.

Glut1 Deficiency

Glut1 deficiency, an autosomal dominant, genetic metabolic disorder associated with a deficiency of GLUT1, the protein that transports glucose across the blood brain barrier, is characterized by mental and motor developmental delays and infantile seizures. Follow the latest research on Glut1 deficiency with this feed.

Hereditary Sensory Autonomic Neuropathy

Hereditary Sensory Autonomic Neuropathies are a group of inherited neurodegenerative disorders characterized clinically by loss of sensation and autonomic dysfunction. Here is the latest research on these neuropathies.

Separation Anxiety

Separation anxiety is a type of anxiety disorder that involves excessive distress and anxiety with separation. This may include separation from places or people to which they have a strong emotional connection with. It often affects children more than adults. Here is the latest research on separation anxiety.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.