Apr 11, 2016

Reconstructing phylogenies of metastatic cancers

BioRxiv : the Preprint Server for Biology
Johannes G ReiterMartin A Nowak

Abstract

Reconstructing the evolutionary history of metastases is critical for understanding their basic biological principles and has profound clinical implications. Genome-wide sequencing data has enabled modern phylogenomic methods to accurately dissect subclones and their phylogenies from noisy and impure bulk tumor samples at unprecedented depth. However, existing methods are not designed to infer metastatic seeding patterns. We have developed a tool, called Treeomics, that utilizes Bayesian inference and Integer Linear Programming to reconstruct the phylogeny of metastases. Treeomics allowed us to infer comprehensive seeding patterns for pancreatic, ovarian, and prostate cancers. Moreover, Treeomics correctly disambiguated true seeding patterns from sequencing artifacts; 7% of variants were misclassified by conventional statistical methods. These artifacts can skew phylogenies by creating illusory tumor heterogeneity among distinct samples. Last, we performed in silico benchmarking on simulated tumor phylogenies across a wide range of sample purities (30-90%) and sequencing depths (50-800x) to demonstrate the high accuracy of Treeomics compared to existing methods.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Genome-Wide Association Study
Patterns
Neoplasms
Ovarian Carcinoma
Sequencing
Subclone
Simulation
Statistical Technique
Malignant Neoplasms
Seeding

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cancer Genomics (Preprints)

Cancer genomics employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Discover the latest preprints here.