Apr 22, 2008

Redox-based regulation of signal transduction: principles, pitfalls, and promises

Free Radical Biology & Medicine
Yvonne M W Janssen-HeiningerAlbert van der Vliet

Abstract

Oxidants are produced as a by-product of aerobic metabolism, and organisms ranging from prokaryotes to mammals have evolved with an elaborate and redundant complement of antioxidant defenses to confer protection against oxidative insults. Compelling data now exist demonstrating that oxidants are used in physiological settings as signaling molecules with important regulatory functions controlling cell division, migration, contraction, and mediator production. These physiological functions are carried out in an exquisitely regulated and compartmentalized manner by mild oxidants, through subtle oxidative events that involve targeted amino acids in proteins. The precise understanding of the physiological relevance of redox signal transduction has been hampered by the lack of specificity of reagents and the need for chemical derivatization to visualize reversible oxidations. In addition, it is difficult to measure these subtle oxidation events in vivo. This article reviews some of the recent findings that illuminate the significance of redox signaling and exciting future perspectives. We also attempt to highlight some of the current pitfalls and the approaches needed to advance this important area of biochemical and biomedical resea...Continue Reading

  • References206
  • Citations353

Citations

Mentioned in this Paper

Glutaredoxin
Embryo
Metabolic Process, Cellular
Ethylmaleimide
Recombinant Transforming Growth Factor
JUN gene
JUND gene
Heat shock proteins
Biochemical Pathway
T-Lymphocyte

Related Feeds

Apoptotic Caspases

Apoptotic caspases belong to the protease enzyme family and are known to play an essential role in inflammation and programmed cell death. Here is the latest research.

Apoptosis

Apoptosis is a specific process that leads to programmed cell death through the activation of an evolutionary conserved intracellular pathway leading to pathognomic cellular changes distinct from cellular necrosis

Astrocytes and Neurodegeneration

Astrocytes are important for the health and function of the central nervous system. When these cells stop functioning properly, either through gain of function or loss of homeostatic controls, neurodegenerative diseases can occur. Here is the latest research on astrocytes and neurodegeneration.