Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations
Abstract
Elevated renal uptake and prolonged retention of radiolabeled antibody fragments and peptides is a problem in the therapeutic application of such agents. Over recent years, one of the focuses of research has therefore been to develop suitable methods to reduce this renal uptake, and to evaluate whether the resulting methodology will benefit therapy with antibody fragments and peptides. In these studies it has been shown that the kidney uptake of antibody fragments in animals can be reduced in a dose-dependent manner by almost one order of magnitude by the systemic administration of cationic amino acids and their derivatives, whereas the uptake in all other organs, as well as the tumor, remains unaffected. A similar reduction in renal retention is achieved for all intracellularly retained radionuclides (e.g., radiometals) or radioiodinated immunoconjugates, as well as for smaller peptides. Lysine is usually the preferred agent, and its d- and l-isomers are equally effective whether given intraperitoneally or orally. Amino sugars are effective, but their N-acetyl derivatives, lacking the positive charge, are not. Basic polypeptides are also effective, and their potency increases with increasing molecular weight (i.e., the amount ...Continue Reading
Citations
Analysis of accumulation of 99mTc-octreotide and 99mTc-EDDA/HYNIC-Tyr3-octreotide in the rat kidneys
Related Concepts
Trending Feeds
COVID-19
Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.
Neural Activity: Imaging
Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.
The Tendon Seed Network
Tendons are rich in the extracellular matrix and are abundant throughout the body providing essential roles including structure and mobility. The transcriptome of tendons is being compiled to understand the micro-anatomical functioning of tendons. Discover the latest research pertaining to the Tendon Seed Network here.
Myocardial Stunning
Myocardial stunning is a mechanical dysfunction that persists after reperfusion of previously ischemic tissue in the absence of irreversible damage including myocardial necrosis. Here is the latest research.
Chronic Fatigue Syndrome
Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.
Incretins
Incretins are metabolic hormones that stimulate a decrease in glucose levels in the blood and they have been implicated in glycemic regulation in the remission phase of type 1 diabetes. Here is the latest research.
Chromatin Regulation and Circadian Clocks
The circadian clock plays an important role in regulating transcriptional dynamics through changes in chromatin folding and remodelling. Discover the latest research on Chromatin Regulation and Circadian Clocks here.
Long COVID-19
“Long Covid-19” describes illness in patients who are reporting long-lasting effects of the SARS-CoV-19 infection, often long after they have recovered from acute Covid-19. Ongoing health issues often reported include low exercise tolerance and breathing difficulties, chronic tiredness, and mental health problems such as post-traumatic stress disorder and depression. This feed follows the latest research into Long Covid.
Spatio-Temporal Regulation of DNA Repair
DNA repair is a complex process regulated by several different classes of enzymes, including ligases, endonucleases, and polymerases. This feed focuses on the spatial and temporal regulation that accompanies DNA damage signaling and repair enzymes and processes.