Jul 21, 2014

Regulation and Role of EZH2 in Cancer

Cancer Research and Treatment : Official Journal of Korean Cancer Association
Hirohito Yamaguchi, Mien-Chie Hung

Abstract

Polycomb repressive complex 2 (PRC2) is the epigenetic regulator that induces histone H3 lysine 27 methylation (H3K27me3) and silences specific gene transcription. Enhancer of zeste homolog 2 (EZH2) is an enzymatic subunit of PRC2, and evidence shows that EZH2 plays an essential role in cancer initiation, development, progression, metastasis, and drug resistance. EZH2 expression is indeed regulated by various oncogenic transcription factors, tumor suppressor miRNAs, and cancer-associated non-coding RNA. EZH2 activity is also controlled by post-translational modifications, which are deregulated in cancer. The canonical role of EZH2 is gene silencing through H3K27me3, but accumulating evidence shows that EZH2 methlyates substrates other than histone and has methylase-independent functions. These non-canonical functions of EZH2 are shown to play a role in cancer progression. In this review, we summarize current information on the regulation and roles of EZH2 in cancer. We also discuss various therapeutic approaches to targeting EZH2.

  • References172
  • Citations72

Citations

Mentioned in this Paper

Histone antigen
Tumor Suppressor Genes
Protein Methylation
RNA, Untranslated
Post-Translational Protein Processing
Transcription, Genetic
Cancer Progression
Transcription Initiation
Methylase Activity
Polycomb Repressive Complex 2

Related Feeds

Cancer Epigenetics (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may or may not provide advantages for the cancer cells. Here is the latest research on cancer epigenetics.

Cancer Epigenetics and Senescence (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may be involved in regulating senescence in cancer cells. This feed captures the latest research on cancer epigenetics and senescence.

Cancer Epigenetics & Methyl-CpG (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. Here is the latest research on cancer epigenetics and methyl-CpG binding proteins including ZBTB38.

Cancer Epigenetics & Metabolism (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may or may not provide advantages for the cancer cells. This feed focuses on the relationship between cell metabolism, epigenetics and tumor differentiation.

Cancer Epigenetics

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may or may not provide advantages for the cancer cells. Here is the latest research on cancer epigenetics.

Cell Signaling & Cancer Epigenetics (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. This feed covers the latest research on signaling and epigenetics in cell growth and cancer.