Jan 24, 2020

Regulation of human development by ubiquitin chain editing of chromatin remodelers

David BeckAchim Werner


Embryonic development occurs through commitment of pluripotent stem cells to differentiation programs that require highly coordinated changes in gene expression. Chromatin remodeling of gene regulatory elements is a critical component of how such changes are achieved. While many factors controlling chromatin dynamics are known, mechanisms of how different chromatin regulators are orchestrated during development are not well understood. Here, we describe LINKED (LINKage-specific-deubiquitylation-deficiency-induced Embryonic Defects) syndrome, a novel multiple congenital anomaly disorder caused by hypomorphic hemizygous missense variants in the deubiquitylase OTUD5/DUBA. Studying LINKED mutations in vitro, in mouse, and in models of neuroectodermal differentiation of human pluripotent stem cells, we uncover a novel regulatory circuit that coordinates chromatin remodeling pathways during early differentiation. We show that the K48-linkage-specific deubiquitylation activity of OTUD5 is essential for murine and human development and, if reduced, leads to aberrant cell-fate specification. OTUD5 controls differentiation through preventing the degradation of multiple chromatin regulators including ARID1A/B and HDAC2, mutation of which ...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Chromatin Remodeling
Ubiquitinated Proteins
Regulation of Biological Process
Neural Crest
Deubiquitinating enzyme A, human
Cell Differentiation Process
Pluripotent Stem Cells
Genetic Linkage

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.