Regulation of steroidogenic function of mouse Leydig cells: G-coupled membrane estrogen receptor and peroxisome proliferator-activated receptor partnership

Journal of Physiology and Pharmacology : an Official Journal of the Polish Physiological Society
E Gorowska-WojtowiczMalgorzata Kotula-Balak


We tested whether G-coupled membrane estrogen receptor (GPER) and peroxisome proliferator activated receptor (PPAR) partnership exists and whether this interaction regulates mouse Leydig cell function. Mature and aged mice were treated with the antagonist of GPER (G-15; 50 μg/kg b.w). Leydig cells (MA-10) were treated with G-15 (10 nM) alone or in combination with peroxisome proliferator-activated receptor α or γ antagonists, respectively (PPARα, 10 μM; PPARγ, 10 μM). GPER blockage affected testis steroidogenic status via changes in lutropin and cholesterol levels as well as protein expression alterations of the lutropin receptor, acute steroidogenesis activating protein, translocator protein, and protein kinase A in mouse Leydig cells both in vivo and in vitro. Inactivation of both GPER and PPAR in vitro revealed expressional modulation of other steroidogenesis-controlling molecules acting on various steps of lipid homeostasis e.g. cytochrome P450scc, perilipin, hormone sensitive lipase, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase. Concomitantly, microscopic analysis of cells treated with antagonists showed changes in morphology, migration competences and cytoskeleton structure. In the above processes, the action of G...Continue Reading

Related Concepts

Related Feeds

AKT Pathway

This feed focuses on the AKT serine/threonine kinase, which is an important signaling pathway involved in processes such as glucose metabolism and cell survival.

Cell Migration

Cell migration is involved in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. Here is the latest research.