Regulation of TFEB activity and its potential as a therapeutic target against kidney diseases.
Abstract
The transcription factor EB (TFEB) regulates the expression of target genes bearing the Coordinated Lysosomal Expression and Regulation (CLEAR) motif, thereby modulating autophagy and lysosomal biogenesis. Furthermore, TFEB can bind to the promoter of autophagy-associated genes and induce the formation of autophagosomes, autophagosome-lysosome fusion, and lysosomal cargo degradation. An increasing number of studies have shown that TFEB stimulates the intracellular clearance of pathogenic factors by enhancing autophagy and lysosomal function in multiple kidney diseases, such as cystinosis, acute kidney injury, and diabetic nephropathy. Taken together, this highlights the importance of developing novel therapeutic strategies against kidney diseases based on TFEB regulation. In this review, we present an overview of the current data on TFEB and its implication in kidney disease.
References
MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
Activation of the transcription factor EB rescues lysosomal abnormalities in cystinotic kidney cells
Citations
Methods Mentioned
Related Concepts
Related Feeds
Autophagosome
An autophagosome is the formation of double-membrane vesicles that involve numerous proteins and cytoplasmic components. These double-membrane vesicles are then terminated at the lysosome where they are degraded. Discover the latest research on autophagosomes here.
Autophagy & Model Organisms
Autophagy is a cellular process that allows degradation by the lysosome of cytoplasmic components such as proteins or organelles. Here is the latest research on autophagy & model organisms
Autophagosome
An autophagosome is the formation of double-membrane vesicles that involve numerous proteins and cytoplasmic components. These double-membrane vesicles are then terminated at the lysosome where they are degraded. Discover the latest research on autophagosomes here.