DOI: 0712.0545Dec 4, 2007Paper

Regulative Differentiation as Bifurcation of Interacting Cell Population

ArXiv
Akihiko Nakajima, Kunihiko Kaneko

Abstract

In multicellular organisms, several cell states coexist. For determining each cell type, cell-cell interactions are often essential, in addition to intracellular gene expression dynamics. Based on dynamical systems theory, we propose a mechanism for cell differentiation with regulation of populations of each cell type by taking simple cell models with gene expression dynamics. By incorporating several interaction kinetics, we found that the cell models with a single intracellular positive-feedback loop exhibit a cell fate switching, with a change in the total number of cells. The number of a given cell type or the population ratio of each cell type is preserved against the change in the total number of cells, depending on the form of cell-cell interaction. The differentiation is a result of bifurcation of cell states via the intercellular interactions, while the population regulation is explained by self-consistent determination of the bifurcation parameter through cell-cell interactions. The relevance of this mechanism to development and differentiation in several multicellular systems is discussed.

Related Concepts

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Hereditary Sensory Autonomic Neuropathy

Hereditary Sensory Autonomic Neuropathies are a group of inherited neurodegenerative disorders characterized clinically by loss of sensation and autonomic dysfunction. Here is the latest research on these neuropathies.

Glut1 Deficiency

Glut1 deficiency, an autosomal dominant, genetic metabolic disorder associated with a deficiency of GLUT1, the protein that transports glucose across the blood brain barrier, is characterized by mental and motor developmental delays and infantile seizures. Follow the latest research on Glut1 deficiency with this feed.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Nodding Syndrome

Nodding Syndrome is a neurological and epileptiform disorder characterized by psychomotor, mental, and growth retardation. Discover the latest research on Nodding Syndrome here.

LRRK2 & Microtubules

Mutations in the LRRK2 gene are risk-factors for developing Parkinson’s disease (PD). LRRK2 mutations in PD have been shown to enhance its association with microtubules. Here is the latest research.

Related Papers

Journal of Theoretical Biology
Akihiko Nakajima, Kunihiko Kaneko
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
Yusuke Goto, Kunihiko Kaneko
© 2021 Meta ULC. All rights reserved