Nov 4, 2018

Regulatory mechanisms for the axonal localization of tau in neurons

BioRxiv : the Preprint Server for Biology
Minori IwataHiroaki Misonou

Abstract

Tau is a microtubule (MT)-associated protein, which precisely localizes to the axon of a mature neuron. Although it has been widely used as an axonal marker, the mechanisms for its axonal localization have been elusive. This might be largely due to the lack of an experimental system, as exogenously expressed tau, such as GFP-tau, mis-localizes to the soma and dendrites. In this study, we found that the expression of endogenous tau and its axonal localization in cultured rat hippocampal neurons mainly occur during early neuronal development and are coupled. By mimicking this early expression, we demonstrate that exogenously expressed human tau can be properly localized to the axon, thereby providing the first experimental model to study the mechanisms of tau localization. Using this model, we obtained surprising findings that the axonal localization of tau did not require the MT-binding domain nor correlate with the MT-binding ability. Instead, we identified a transport mechanism mediated by the proline-rich region 2 (PRR2), which contains a number of important phosphorylation sites. Mimicking phosphorylation and dephosphorylation in PRR2 disrupts the axonal localization, suggesting that it is indeed regulated by the phosphoryla...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Biological Markers
Establishment and Maintenance of Localization
Study
Neurons
Proline-Rich Domain
Protein Phosphorylation
PNRC1
Proline
Evaluation
Microtubules

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Related Papers

The Journal of Neuroscience : the Official Journal of the Society for Neuroscience
Camilla Stampe JensenHiroaki Misonou
Advances in Cyclic Nucleotide Research
S A Rudolph, B K Krueger
The Journal of Neuroscience : the Official Journal of the Society for Neuroscience
J W Mandell, G A Banker
© 2020 Meta ULC. All rights reserved