Regulatory roles of phytochemicals on circular RNAs in cancer and other chronic diseases.

Pharmacological Research : the Official Journal of the Italian Pharmacological Society
Shasha ZhangTing Wang


As novel non-coding RNAs (ncRNAs), circular RNAs (circRNAs) play an essential role in the pathogenesis of many chronic diseases, and the regulation of these functional molecules has become a research hotspot gradually. Within the past decade, phytochemicals were reported to regulate the expression of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in various chronic diseases, and more recently, most studies focus on the regulatory roles of phytochemicals on circRNAs. Abnormal expression of circRNAs has been identified in chronic diseases like cancer, heart failure, depression and atherosclerosis, and numerous studies have revealed the modulation of circRNAs by phytochemicals including berberine, celastrol, cinnamaldehyde, curcumin, et al. The expression of circRNAs, such as circSATB2 and circFOXM1, were modulated by phytochemicals, and these regulations further affected cell proliferation, apoptosis, migration, invasion, autophagy, chemosensitivity, radiosensitivity and other biological processes. Mechanismly, the circRNAs mainly functioned as miRNA sponge, subsequently affecting miRNA-mediated regulation of target genes and related cell signaling pathways. In this review, we summarized the impact of phytochemicals on cir...Continue Reading


Dec 4, 2015·Molecules : a Journal of Synthetic Chemistry and Natural Product Chemistry·Yu-Jie ZhangHua-Bin Li
Nov 2, 2019·Molecules : a Journal of Synthetic Chemistry and Natural Product Chemistry·Prakash ThangavelRossana C Zepeda

❮ Previous
Next ❯

Related Concepts

Related Feeds

Apoptosis in Cancer

Apoptosis is an important mechanism in cancer. By evading apoptosis, tumors can continue to grow without regulation and metastasize systemically. Many therapies are evaluating the use of pro-apoptotic activation to eliminate cancer growth. Here is the latest research on apoptosis in cancer.

Autophagy & Disease

Autophagy is an important cellular process for normal physiology and both elevated and decreased levels of autophagy are associated with disease. Here is the latest research.

Parkinson's Disease & Autophagy (MDS)

Autophagy leads to degradation of damaged proteins and organelles by the lysosome. Impaired autophagy has been implicated in several diseases. Here is the role of autophagy in Parkinson’s disease.

Cell Migration in Cancer and Metastasis

Migration of cancer cells into surrounding tissue and the vasculature is an initial step in tumor metastasis. Discover the latest research on cell migration in cancer and metastasis here.


Apoptosis is a specific process that leads to programmed cell death through the activation of an evolutionary conserved intracellular pathway leading to pathognomic cellular changes distinct from cellular necrosis

Cell Migration

Cell migration is involved in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. Here is the latest research.

Autophagy & Metabolism

Autophagy preserves the health of cells and tissues by replacing outdated and damaged cellular components with fresh ones. In starvation, it provides an internal source of nutrients for energy generation and, thus, survival. A powerful promoter of metabolic homeostasis at both the cellular and whole-animal level, autophagy prevents degenerative diseases. It does have a downside, however--cancer cells exploit it to survive in nutrient-poor tumors.

Autophagy & Model Organisms

Autophagy is a cellular process that allows degradation by the lysosome of cytoplasmic components such as proteins or organelles. Here is the latest research on autophagy & model organisms