Oct 27, 2001

Replacement of the muscle-specific sarcoplasmic reticulum Ca(2+)-ATPase isoform SERCA2a by the nonmuscle SERCA2b homologue causes mild concentric hypertrophy and impairs contraction-relaxation of the heart

Circulation Research
M Ver HeyenF Wuytack


The cardiac sarco(endo)plasmic reticulum Ca(2+)-ATPase gene (ATP2A2) encodes the following two different protein isoforms: SERCA2a (muscle-specific) and SERCA2b (ubiquitous). We have investigated whether this isoform specificity is required for normal cardiac function. Gene targeting in mice successfully disrupted the splicing mechanism responsible for generating the SERCA2a isoform. Homozygous SERCA2a(-/-) mice displayed a complete loss of SERCA2a mRNA and protein resulting in a switch to the SERCA2b isoform. The expression of SERCA2b mRNA and protein in hearts of SERCA2a(-/-) mice corresponded to only 50% of wild-type SERCA2 levels. Cardiac phospholamban mRNA levels were unaltered in SERCA2a(-/-) mice, but total phospholamban protein levels increased 2-fold. The transgenic phenotype was characterized by a approximately 20% increase in embryonic and neonatal mortality (early phenotype), with histopathologic evidence of major cardiac malformations. Adult SERCA2a(-/-) animals (adult phenotype) showed a reduced spontaneous nocturnal activity and developed a mild compensatory concentric cardiac hypertrophy with impaired cardiac contractility and relaxation, but preserved beta-adrenergic response. Ca(2+) uptake levels in SERCA2a(-/...Continue Reading

Mentioned in this Paper

ATP2A2 protein, human
Myocardial Contraction
Nested Transcripts
Ca(2+)-Transporting ATPase
ATP2A2 gene
Cardiac Hypertrophy

Related Feeds


Cardiomegaly, known as an enlarged heart, is a multifactorial disease with different pathophysiological mechanisms. Hypertension, pregnancy, exercise-induced and idiopathic causes are some mechanisms of cardiomegaly. Discover the latest research of cardiomegaly here.

Birth Defects

Birth defects encompass structural and functional alterations that occur during embryonic or fetal development and are present since birth. The cause may be genetic, environmental or unknown and can result in physical and/or mental impairment. Here is the latest research on birth defects.