May 28, 1976

Resistance of Pediococcus cerevisiae to amethopterin as a consequence of changes in enzymatic activity and cell permeability. I. Dihydrofolate reductase, thymidylate synthetase and formyltetrahydrofolate synthetase in amethopterin-resistant and -sensitive strains of Pediococcus cerevisiae

Biochimica Et Biophysica Acta
F Mandelbaum-Shavit

Abstract

Pediococcus cerevisiae/AMr, resistant to amethopterin, possesses a higher dihydrofolate reductase (5, 6, 7, 8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) activity than the parent, a folate-permeable and thus amethopterin-susceptible strain and than the wild-type. The properties of dihydrofolate reductase from the three strains have been compared. Temperature, pH optima, heat stability, as well amethopterin binding did not reveal significant differences between the enzymes from the susceptible and resistant strains. The enzyme from the wild-type was 10 times more sensitive to inhibition by amethopterin and more susceptible to heat denaturation. The apparent Km values for dihydrofolate in enzymes from the three strains were in the range of 4.8--7.2 muM and for NADPH 6.5--8.0 muM. The amethopterin-resistant strain exhibited cross-resistance to trimethoprim and was about 40-fold more resistant to the latter than the sensitive parent and the wild-type. The resistance to trimethoprim appears to be a direct result of the increased dihydrofolate reductase activity. Inhibition of dihydrofolate reductase activity by this drug was similar in the three strains. 10--20 nmol caused 50% inhibition of 0.02 enzyme unit. Trimethoprim was...Continue Reading

  • References10
  • Citations1

Citations

Mentioned in this Paper

Antibiotic Resistance, Microbial
Thymidylate Synthase
Enzymes, antithrombotic
Trimethoprim
DHFR
5,6,7,8-tetrahydrofolic acid
Formates
Folate
Enzymes for Treatment of Wounds and Ulcers
Monofunctional C1-Tetrahydrofolate Synthase, Mitochondrial

About this Paper

Related Feeds

Antimicrobial Resistance (ASM)

Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections.

Allergy & Infectious Diseases

Allergies result from the hyperreactivity of the immune system to some environmental substance and can be life-threatening. Infectious diseases are caused by organisms including bacteria, viruses, fungi and parasites. They can be transmitted different ways, such as person-to-person. Here is the latest research on allergy and infectious diseases.

Allergy & Infectious Diseases (ASM)

Allergies result from the hyperreactivity of the immune system to some environmental substance and can be life-threatening. Infectious diseases are caused by organisms including bacteria, viruses, fungi and parasites. They can be transmitted different ways, such as person-to-person. Here is the latest research on allergy and infectious diseases.

Antimicrobial Resistance

Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections.