Reversible conversion from Ca(2)+-ATPase activity to Mg(2)+- and Mn(2)+-ATPase activities of coupling factor purified from acetone powder of Rhodospirillum rubrum chromatophores

Journal of Biochemistry
G SoeJ Yamashita


It is known that the coupling factor purified from the acetone powder of chromatophores from Rhodospirillum rubrum shows ATPase activity in the presence of Ca(2)+, but not in the presence of Mg(2)+ or Mn(2)+. The present study deals with conditions, under which the Ca(2)+-ATPase activity is reversibly converted into Mg(2)+- and Mn(2)+-ATPase activites with the purified coupling factor. 1. Of the pH indicators tested, 6 kinds coverted the Ca(2)+-ATPase activity into Mg(2)+- and Mn(2)+-ATPase activities in the order, ethyl orange greater than tropaeolin 000 greater than or equal to metanil yellow greater than tropaeolin 00 greater than ethyl red greater than or equal to bromthymol blue. 2. Of the detergents tested, those other than Triton X-100 and Brij 58 caused the conversion described above; dodecylsulfonate was most effective, whereas dodecylpyridinium chloride was moderately effective. 3. 2,4-Dinitrophenol stimulated approximately two-fold the Ca(2)+-ATPase activity, but not the Mg(2)+- or Mn(2)+-ATPase activity at all. However, in the presence of dodecylpyridinium chloride, the pH indicator remarkably stimulated the Mg(2)+- and Mn(2)+-ATPase activities, accompanied with a partial inhibition of the Ca(2)+-ATPase activity. Me...Continue Reading

Related Concepts

Cations, Divalent
Ca(2+)-Transporting ATPase
Adenosine Triphosphatases
G-Protein-Coupled Receptors

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Synapse Loss as Therapeutic Target in MS

As we age, the number of synapses present in the human brain starts to decline, but in neurodegenerative diseases this occurs at an accelerated rate. In MS, it has been shown that there is a reduction in synaptic density, which presents a potential target for treatment. Here is the latest research on synapse loss as a therapeutic target in MS.

Artificial Intelligence in Cardiac Imaging

Artificial intelligence (ai) techniques are increasingly applied to cardiovascular (cv) medicine in cardiac imaging analysis. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Social Learning

Social learning involves learning new behaviors through observation, imitation and modeling. Follow this feed to stay up to date on the latest research.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Single Cell Chromatin Profiling

Techniques like ATAC-seq and CUT&Tag have the potential to allow single cell profiling of chromatin accessibility, histones, and TFs. This will provide novel insight into cellular heterogeneity and cell states. Discover the latest research on single cell chromatin profiling here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells.