Jul 17, 2014

Rewiring of genetic networks in response to modification of genetic background

BioRxiv : the Preprint Server for Biology
Djordje BajicJuan F Poyatos

Abstract

Genome-scale genetic interaction networks are progressively contributing to map the molecular circuitry that determines cellular behaviour. To what extent this mapping changes in response to different environmental or genetic conditions is however largely unknown. Here we assembled a genetic network using an in silico model of metabolism in yeast to explicitly ask how separate genetic backgrounds alter network structure. Backgrounds defined by single deletions of metabolically active enzymes induce strong rewiring when the deletion corresponds to a catabolic gene, evidencing a broad redistribution of fluxes to alternative pathways. We also show how change is more pronounced in interactions linking genes in distinct functional modules, and in those connections that present weak epistasis. These patterns reflect overall the distributed robustness of catabolism. In a second class of genetic backgrounds, in which a number of neutral mutations accumulate, we dominantly observe modifications in the negative interactions that together with an increase in the number of essential genes indicate a global reduction in buffering. Notably, neutral trajectories that originate considerable changes in the wild-type network comprise mutations t...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Metabolic Process, Cellular
Biochemical Pathway
Patterns
Genes
Enzymes, antithrombotic
Environment
Molecular_function
Gene Deletion Abnormality
Gene Deletion
Yeasts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.