High-throughput AFM analysis reveals unwrapping pathways of H3 and CENP-A nucleosomes

BioRxiv : the Preprint Server for Biology
S. F. KonradJan Lipfert

Abstract

Nucleosomes, the fundamental units of chromatin, regulate readout and expression of eukaryotic genomes. Single-molecule experiments have revealed force-induced transient nucleosome accessibility, but a high-resolution unwrapping landscape in the absence of external forces is currently lacking. Here, we introduce a high-throughput pipeline for the analysis of nucleosome conformations based on atomic force microscopy and automated, multi-parameter image analysis. Our data set of ~10,000 nucleosomes reveals multiple unwrapping states corresponding to steps of 5 bp DNA. For canonical H3 nucleosomes, we observe that dissociation from one side impedes unwrapping from the other side, but unlike to force-induced unwrapping, we find only a weak sequence-dependent asymmetry. Centromeric CENP-A nucleosomes do not unwrap anti-cooperatively, in stark contrast to H3 nucleosomes, likely due to their shorter N-terminal alpha-helix. Finally, our results reconcile previously conflicting findings about the differences in height between H3 and CENP-A nucleosomes. We expect our approach to enable critical insights into epigenetic regulation of nucleosome structure and stability.

Related Concepts

Establishment and Maintenance of Localization
Genome
Dromostanolone propionate
Chloroplast Genome-Encoded Proteins
Chromatin Immunoprecipitation
Chi protein, Drosophila
Study of Epigenetics
Binding Protein
Site
Sequencing

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.