Sep 14, 2015

RNA polymerase errors cause splicing defects and can be regulated by differential expression of RNA polymerase subunits

BioRxiv : the Preprint Server for Biology
Lucas B Carey

Abstract

Errors during transcription may play an important role in determining cellular phenotypes: the RNA polymerase error rate is >4 orders of magnitude higher than that of DNA polymerase and errors are amplified >1000-fold due to translation. However, current methods to measure RNA polymerase fidelity are low-throughout, technically challenging, and organism specific. Here we show that changes in RNA polymerase fidelity can be measured using standard RNA sequencing protocols. We find that RNA polymerase is error-prone, and these errors can result in splicing defects. Furthermore, we find that differential expression of RNA polymerase subunits causes changes in RNA polymerase fidelity, and that coding sequences may have evolved to minimize the effect of these errors. These results suggest that errors cause by RNA polymerase may be a major source of stochastic variability at the level of single cells.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

DNA-Directed RNA Polymerase
Sequence Determinations, RNA
RNA Polymerase Assembly Pathway
Transcription, Genetic
Protein Biosynthesis
Nuclear mRNA Cis Splicing, via Spliceosome
Organism
RNA polymerase alpha subunit
RNA Splicing
DNA-Directed DNA Polymerase

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.