Jun 7, 2015

RNA:DNA hybrids in the human genome have distinctive nucleotide characteristics, chromatin composition, and transcriptional relationships

BioRxiv : the Preprint Server for Biology
Julie NadelJohn M Greally

Abstract

RNA:DNA hybrids represent a non-canonical nucleic acid structure that has been associated with a range of human diseases and potential transcriptional regulatory functions. Mapping of RNA:DNA hybrids in human cells reveals them to have a number of characteristics that give insights into their functions. A directional sequencing approach shows the RNA component of the RNA:DNA hybrid to be purine-rich, indicating a thermodynamic contribution to their in vivo stability. The RNA:DNA hybrids are enriched at loci with decreased DNA methylation and increased DNase hypersensitivity, and within larger domains with characteristics of heterochromatin formation, indicating potential transcriptional regulatory properties. Mass spectrometry studies of chromatin at RNA:DNA hybrids shows the presence of the ILF2 and ILF3 transcription factors, supporting a model of certain transcription factors binding preferentially to the RNA:DNA conformation. Overall, there is little to indicate a dependence for RNA:DNA hybrids forming co-transcriptionally, with results from the ribosomal DNA repeat unit instead supporting a model of RNA generating these structures in trans . The results of the study indicate heterogeneous functions of these genomic element...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
nucleic acid structure
In Vivo
DNA Methylation [PE]
Transcriptional Regulation
Deoxyribonuclease I
Heterochromatin Assembly
Genome
Transcription, Genetic
Coinfection

About this Paper

Related Feeds

Allergy and Asthma

Allergy and asthma are inflammatory disorders that are triggered by the activation of an allergen-specific regulatory t cell. These t cells become activated when allergens are recognized by allergen-presenting cells. Here is the latest research on allergy and asthma.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.