DOI: 10.1101/457309Oct 30, 2018Paper

Robust methods for detecting convergent shifts in evolutionary rates

BioRxiv : the Preprint Server for Biology
Raghavendran ParthaMaria Chikina


Identifying genomic elements underlying phenotypic adaptations is an important problem in evolutionary biology. Comparative analyses learning from convergent evolution of traits are gaining momentum in accurately detecting such elements. We previously developed a method for predicting phenotypic associations of genetic elements by contrasting patterns of sequence evolution in species showing a phenotype with those that do not. Using this method, we successfully demonstrated convergent evolutionary rate shifts in genetic elements associated with two phenotypic adaptations, namely the independent subterranean and marine transitions of terrestrial mammalian lineages. Our method calculates gene-specific rates of evolution on branches of phylogenetic trees using linear regression. These rates represent the extent of sequence divergence on a branch after removing the expected divergence on the branch due to background factors. The rates calculated using this regression analysis exhibit an important statistical limitation, namely heteroscedasticity. We observe that the rates on branches that are longer on average show higher variance, and describe how this problem adversely affects the confidence with which we can make inferences abou...Continue Reading

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.