Role of 1'-Ribose Cyano Substitution for Remdesivir to Effectively Inhibit both Nucleotide Addition and Proofreading in SARS-CoV-2 Viral RNA Replication

BioRxiv : the Preprint Server for Biology
L. ZhangXuhui Huang


COVID-19 has recently caused a global health crisis and an effective interventional therapy is urgently needed. SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) provides a promising but challenging drug target due to its intrinsic proofreading exoribonuclease (ExoN) function. Nucleoside triphosphate (NTP) analogues added to the growing RNA chain should supposedly terminate viral RNA replication, but ExoN can cleave the incorporated compounds and counteract their efficacy. Remdesivir targeting SARS-CoV-2 RdRp exerts high drug efficacy in vitro and in vivo. However, its underlying inhibitory mechanisms remain elusive. Here, we performed all-atom molecular dynamics (MD) simulations with an accumulated simulation time of 12.6 microseconds to elucidate the molecular mechanisms underlying the inhibitory effects of remdesivir in nucleotide addition (RdRp complex: nsp12-nsp7-nsp8) and proofreading (ExoN complex: nsp14-nsp10). We found that the 1'-cyano group of remdesivir possesses the dual role of inhibiting both nucleotide addition and proofreading. For nucleotide addition, we showed that incorporation of one remdesivir is not sufficient to terminate RNA synthesis. Instead, the presence of the polar 1'-cyano group of remdesivir at an u...Continue Reading

Related Concepts

Biological Markers
Trees (plant)
Reconstructive Surgical Procedures
Phylogenetic Analysis
Multilocus Sequence Typing
Cloeon dipterum
Base Pairing

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.