PMID: 108259May 1, 1979

Role of heme in synthesis and membrane binding of succinic dehydrogenase in Bacillus subtilis

Journal of Bacteriology
E HolmgrenL Rutberg


A 5-aminolevulinic acid-requiring mutant of Bacillus subtilis was isolated. When the mutant is shifted from medium containing 5-aminolevulinic acid to medium lacking this growth factor, the bacteria continued to grow at undiminished rate for about three generations. The membranes from these bacteria contained severely reduced amounts of cytochrome. The mutant was used to study the role of heme synthesis on synthesis and membrane binding of succinic dehydrogenase (SDH). The amount of SDH in whole-cell lysates in the soluble cytoplasmic fraction and in membranes was determined by one-dimensional (rocket) immunoelectrophoresis with an SDH-specific antiserum. After heme synthesis was blocked, the relative amount of SDH in the membrane decreased, whereas increasing amounts of SDH antigen were found in the cytoplasm. When heme synthesis was resumed on readdition of 5-aminolevulinic acid, the amount of membrane-bound SDH antigen increased at a much faster rate than net synthesis. During a 3-h growth period without 5-aminolevulinic acid, there was little change in the pattern of membrane proteins as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of radioactively labeled membranes, as compared to membranes from ...Continue Reading

Related Concepts

Aminolevulinic Acid Hydrochloride
Natto Bacteria
Bacterial Proteins
Plasma Membrane
Cell Surface Proteins
Peptide Biosynthesis
Plasma Protein Binding Capacity
Succinate Dehydrogenase

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

The Tendon Seed Network

Tendons are rich in the extracellular matrix and are abundant throughout the body providing essential roles including structure and mobility. The transcriptome of tendons is being compiled to understand the micro-anatomical functioning of tendons. Discover the latest research pertaining to the Tendon Seed Network here.

Myocardial Stunning

Myocardial stunning is a mechanical dysfunction that persists after reperfusion of previously ischemic tissue in the absence of irreversible damage including myocardial necrosis. Here is the latest research.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.


Incretins are metabolic hormones that stimulate a decrease in glucose levels in the blood and they have been implicated in glycemic regulation in the remission phase of type 1 diabetes. Here is the latest research.

Chromatin Regulation and Circadian Clocks

The circadian clock plays an important role in regulating transcriptional dynamics through changes in chromatin folding and remodelling. Discover the latest research on Chromatin Regulation and Circadian Clocks here.

Long COVID-19

“Long Covid-19” describes illness in patients who are reporting long-lasting effects of the SARS-CoV-19 infection, often long after they have recovered from acute Covid-19. Ongoing health issues often reported include low exercise tolerance and breathing difficulties, chronic tiredness, and mental health problems such as post-traumatic stress disorder and depression. This feed follows the latest research into Long Covid.

Spatio-Temporal Regulation of DNA Repair

DNA repair is a complex process regulated by several different classes of enzymes, including ligases, endonucleases, and polymerases. This feed focuses on the spatial and temporal regulation that accompanies DNA damage signaling and repair enzymes and processes.