Jun 28, 2008

Role of lysine epsilon-amino groups of beta-lactoglobulin on its activating effect of Kluyveromyces lactis beta-galactosidase

Journal of Agricultural and Food Chemistry
Elizabeth Del Moral-RamírezJudith Jiménez-Guzmán


Native beta-lactoglobulin binds and increases the activity of Kluyveromyces lactis beta-galactosidase. Construction of a three-dimensional (3D) model of beta-lactoglobulin showed that lysine residues 15, 47, 69, and 138 are the most exposed ones, thus the ones more likely to interact with beta-galactosidase. Molecular docking estimated the interaction energies of amino acid residues with either lactose or succinic anhydride, showing that Lys(138) is the most likely to react with both. Affinity chromatography demonstrated that succinylated beta-lactoglobulin diminished its ability to bind to the enzyme. Furthermore, when activity was measured in the presence of succinylated beta-lactoglobulin, its activating effect was lost. Since succinylation specifically blocks Lys epsilon-amino groups, their loss very likely causes the disappearance of the activating effect. Results show that the activating effect of beta-lactoglobulin on beta-galactosidase activity is due to the interaction between both proteins and that this interaction is very likely to occur through the Lys epsilon-amino groups of beta-lactoglobulin.

  • References
  • Citations2


  • We're still populating references for this paper, please check back later.

Mentioned in this Paper

Beta Lactoglobulin
Docking -molecular Interaction
Succinic Anhydride
Beta-galactosidase Activity
Binding (Molecular Function)
Urine Lysine Measurement

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.