Role of renal prostaglandins in sympathetically mediated renin relase in the rat
Abstract
Renal prostaglandins (PG) appear to mediate renin release due to stimulation of the intrarenal baroreceptor, but not that due to activation of the macula densa. However, as the role of PG in sympathetically mediated renin release remains unclear, a possible interrelationship between these factors was examined in conscious rats. Hydralazine increased the serum renin levels from 3.1+/-0.8 to 16.7+/-3.0 ng/ml per h at a dose of 1 mg/kg. Indomethacin (5 mg/kg) suppressed urinary PGE(2) and PGF(2alpha) excretion by 89 and 74%, respectively, arachidonate hypotension by 82%, and inhibited the elevated renin levels from hydralazine by 100% without altering the hypotensive effect of the drug. Another PG synthetase inhibitor, meclofenamate, was also effective in attenuating hydralazine-induced renin release, urinary PGE(2) and PGF(2alpha) excretion, and arachidonate hypotension. Isoproterenol, a nonselective beta-adrenergic agonist, increased heart rate, lowered blood pressure, and also stimulated the release of renin when administered intraperitoneally. However, intrarenal infusion of the drug only resulted in increased renin release. Indomethacin inhibited isoproterenol-induced renin release by 66 and 67%, respectively, without alterin...Continue Reading
References
Citations
Related Concepts
Related Feeds
Adrenergic Receptors: Trafficking
Adrenergic receptor trafficking is an active physiological process where adrenergic receptors are relocated from one region of the cell to another or from one type of cell to another. Discover the latest research on adrenergic receptor trafficking here.
Antihypertensive Agents: Mechanisms of Action
Antihypertensive drugs are used to treat hypertension (high blood pressure) which aims to prevent the complications of high blood pressure, such as stroke and myocardial infarction. Discover the latest research on antihypertensive drugs and their mechanism of action here.