PMID: 6988512Apr 1, 1980Paper

Role of sialic acid in the macrophage glycolipid receptor for MIF

The Journal of Immunology : Official Journal of the American Association of Immunologists
D Y LiuJ R David

Abstract

Acidic glycolipids from guinea pig macrophages enhance the response of macrophages to migration inhibitory factor (MIF), suggesting a role of glycolipid receptors for this lymphocyte mediator. Neuraminidase treatment of these glycolipids results in the loss of their biologic activity. This activity remains intact after incubation of the glycolipids with beta-galactosidase. In order to investigate whether sialic acid is essential for the macrophage's response to MIF, macrophages were incubated with neuraminidase. Neuraminidase treatment of peritoneal exudate cells results in the abrogation of macrophage responsiveness to MIF. Other exoglycosidases such as beta-galactosidase and beta-glucosidase had no effect upon the macrophage response. The effect of neuraminidase was found to be reversible within 18 hr. These experiments suggest that macrophage glycolipids containing sialic acid are components of the macrophage receptor for MIF.

Related Concepts

Glycolipids
Exoglycosidases
Cavia porcellus
Migration Inhibition Factor, Macrophage
Macrophage
Neuraminidase
Sialic Acids

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Evolution of Pluripotency

Pluripotency refers to the ability of a cell to develop into three primary germ cell layers of the embryo. This feed focuses on the mechanisms that underlie the evolution of pluripotency. Here is the latest research.

Lipidomics & Rhinovirus Infection

Lipidomics can be used to examine the lipid species involved with pathogenic conditions, such as viral associated inflammation. Discovered the latest research on Lipidomics & Rhinovirus Infection.

Spatio-Temporal Regulation of DNA Repair

DNA repair is a complex process regulated by several different classes of enzymes, including ligases, endonucleases, and polymerases. This feed focuses on the spatial and temporal regulation that accompanies DNA damage signaling and repair enzymes and processes.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Torsion Dystonia

Torsion dystonia is a movement disorder characterized by loss of control of voluntary movements appearing as sustained muscle contractions and/or abnormal postures. Here is the latest research.

Archaeal RNA Polymerase

Archaeal RNA polymerases are most similar to eukaryotic RNA polymerase II but require the support of only two archaeal general transcription factors, TBP (TATA-box binding protein) and TFB (archaeal homologue of the eukaryotic general transcription factor TFIIB) to initiate basal transcription. Here is the latest research on archaeal RNA polymerases.

Alzheimer's Disease: MS4A

Variants within the membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease in genome-wide association studies. Here is the latest research on Alzheimer's disease and MS4A.

Central Pontine Myelinolysis

Central Pontine Myelinolysis is a neurologic disorder caused most frequently by rapid correction of hyponatremia and is characterized by demyelination that affects the central portion of the base of the pons. Here is the latest research on this disease.