Mar 8, 2020

Role of Specialized mSWI/SNF Complexes in Prostate Cancer Lineage Plasticity

Joanna CyrtaMark A Rubin


Advanced prostate cancer initially responds to hormonal treatment, but ultimately becomes resistant and requires more potent therapies. One mechanism of resistance observed in ~10% of these patients is through lineage plasticity, which manifests in a partial or complete small cell or neuroendocrine prostate cancer (NEPC) phenotype. Here, we investigate the role of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complex in NEPC. Using large patient datasets, patient-derived organoids and cancer cell lines, we identify mSWI/SNF subunits that are deregulated in NEPC and demonstrate that SMARCA4 (BRG1) overexpression is associated with aggressive disease. We also show that SWI/SNF complexes interact with different lineage-specific factors in NEPC compared to prostate adenocarcinoma. These data suggest a role for mSWI/SNF complexes in therapy-related lineage plasticity, which may be relevant for other solid tumors.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Adenocarcinoma of Prostate
Protein Overexpression
Malignant Neoplasm of Prostate
Solid Tumour
Drug Resistance
Cell Line, Tumor
Complex (molecular entity)
Small Melanoma Cell

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.