DOI: 10.1101/517771Jan 17, 2019Paper

RPA phosphorylation regulates DNA resection

BioRxiv : the Preprint Server for Biology
Michael M SoniatIlya J Finkelstein


Genetic recombination in all kingdoms of life initiates when helicases and nucleases process (resect) the free DNA ends to expose single-stranded (ss) DNA overhangs. Resection termination in bacteria is programmed by a DNA sequence but the mechanisms limiting resection in eukaryotes have remained elusive. Using single-molecule imaging of reconstituted human DNA repair factors, we identify a general mechanism that limits DNA resection. BLM helicase together with EXO1 and DNA2 nucleases catalyze kilobase-length DNA resection on nucleosome-coated DNA. The resulting ssDNA is rapidly bound by RPA, which is in turn phosphorylated as part of the DNA damage response (DDR). Remarkably, phosphorylated RPA (pRPA) inhibits DNA resection via regulation of BLM helicase. pRPA suppresses BLM initiation at DNA ends and promotes the intrinsic helicase strand-switching activity. These findings establish that pRPA is a critical regulator of DNA repair enzymes and provides a feedback loop between the DDR and DNA resection termination.

Related Concepts

DNA Repair
DNA, Single-Stranded
Intrinsic factor
Recombination, Genetic
DNA Sequence
EXO1 protein, human

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.