Sarcoplasmic reticulum calcium content fluctuation is the key to cardiac alternans
Abstract
The aim of this work was to investigate whether beat-to-beat alternation in the amplitude of the systolic Ca(2+) transient (Ca(2+) alternans) is due to changes of sarcoplasmic reticulum (SR) Ca(2+) content, and if so, whether the alternans arises due to a change in the gain of the feedback controlling SR Ca(2+) content. We found that, in rat ventricular myocytes, stimulating with small (20 mV) depolarizing pulses produced alternans of the amplitude of the Ca(2+) transient. Confocal measurements showed that the larger transients resulted from propagation of Ca(2+) waves. SR Ca(2+) content (measured from caffeine-evoked membrane currents) alternated in phase with the alternans of Ca(2+) transient amplitude. After a large transient, if SR Ca(2+) content was elevated by brief exposure of the cell to a Na(+)-free solution, then the alternans was interrupted and the next transient was also large. This shows that changes of SR Ca(2+) content are sufficient to produce alternans. The dependence of Ca(2+) transient amplitude on SR content was steeper under alternating than under control conditions. During alternation, the Ca(2+) efflux from the cell was also a steeper function of SR Ca(2+) content than under control. We attribute these s...Continue Reading
References
Citations
Mechanistic investigation of Ca2+ alternans in human heart failure and its modulation by fibroblasts
A model for cooperative gating of L-type Ca2+ channels and its effects on cardiac alternans dynamics
Related Concepts
Related Feeds
Arrhythmia
Arrhythmias are abnormalities in heart rhythms, which can be either too fast or too slow. They can result from abnormalities of the initiation of an impulse or impulse conduction or a combination of both. Here is the latest research on arrhythmias.
Atrial Fibrillation
Atrial fibrillation is a common arrhythmia that is associated with substantial morbidity and mortality, particularly due to stroke and thromboembolism. Here is the latest research.